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• This presentation is a qualitative outline for implementing Shor’s algorithm 
• There is an extensive amount of additional mathematics that cannot be 

covered in one lecture 
• To fully understand Shor’s algorithm a much more detailed study of this topic 

needs to be undertaken to prove each step for a complete presentation 
• A detailed set of references provided at the end of this presentation that 

expands in detail the complexity of the calculations needed to prove Shor’s 
algorithm
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Outline

• Preliminaries
– Review of some basic mathematics relevant to Shor’s algorithm
– Introduction to Period Finding

• Simon’s Algorithm

• Shor’s Algorithm

• References
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Math Review:  Factoring and Modular Arithmetic
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Factoring Numbers

• "Factors" are the numbers you multiply to get another number. 
• Example:   Let N=60 = 22 x 3 x 5  or  𝑃𝑃1

𝑒𝑒1𝑃𝑃2
𝑒𝑒2….. 𝑃𝑃𝑘𝑘

𝑒𝑒𝑘𝑘

• Select P and Q to be odd integer primes numbers 
• N = PQ is a very large number and n is the length of N in bits
• Digital computers requires times Ο 2𝑛𝑛 to factor these numbers 
• State of the art factoring corresponds to 750 bits or ~ 200 decimal digits
• Impossible for digital computers today or anytime in the foreseeable future to 

be able to factor such numbers if P and Q are selected larger than 750 bits
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Modular Arithmetic

• a ≡ b (mod N)  (a is congruent to (mod N)

• b=qN+a (q is some quotient times N; a is the remainder)

• Examples 
 24 (mod 21) = 3
 35 (mod 21) = 14
 20 (mod 21) = -1
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Modular Arithmetic

• Addition
24 (mod 21) + 35 (mod 21) = 3 +14 = 17 (mod 21)

• Multiplication
24 (mod 21) x 30 (mod 21) = 3 x 9 = 27 = 6 (mod 21) 
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Arithmetic mod N

• Greatest common divisor  

• Example  gcd(15, 21)  gcd (3x5, 3x7)  3
• Euclid’s algorithm  

21 = 1 x 15 + 6
15 = 2 x 6 + 3

6 = 2 x 3 + 0
GCD is the last non-zero remainder  (in this case 3) 

Notation: c|a one integer c divides another integer a evenly (0 remainder)
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Factoring 

• Factoring consists of writing a number as a product of several factors usually 
smaller or simpler objects of the same kind

• Example – factor 21
– Need to solve the equation  x2 ≡ 1 (mod 21) whose square root is such 

that get 1 for a given (mod N)
– Choose trivial option x =1  get x2 ≡ 1 (mod 21)
– Choose trivial option x =-1  get x2 ≡ 20 (mod 21) 

• 202 gives 400 (mod 21) = 1 (mod 21)
• In general whatever N is N-1 mod squared is 1 (mod N)

• The question is are there other integers that satisfy 
x2 ≡ 1 (mod 21) such that get 1 
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Factoring (cont’d)

• Make a guess x = 8
• 82 = 64 and 64 (mod 21) = 1 (mod 21)

• Consider another option 
• 82 - 12 = 0 (mod 21)
• 82 - 12 = (8 + 1)(8 - 1)
• Neither (8 + 1) or (8 - 1) can be divided into 21
• Factorize 21 as 3 x 7
• Now one part of (8 + 1)(8 - 1) divides each factor
• Recover the prime factors or 21 by 

• gcd (21, 8+1) = 3
• gcd (21, 8-1) = 7
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Factoring (cont’d)
• What about x = -8 ?

• X = -8 ≡ 13 (mod 21)
• 13 2 = 169 ≡ 1 (mod 21)

• The numbers +8,  -8 and 13 are the non-trivial square roots of 1(mod 21)

• Ultimate goal is to calculate non-trivial square roots of (mod N)
• Need to finds values for x such that 

x ≢ +1(mod N) or    x ≢ -1(mod N)
but 

x2 ≡ 1(mod N) such that N divides product (x+1)(x-1) but not individually
Recover prime factors product 2 primes from gcd (N, x+1) and gcd (N, x-1)  
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Factoring (cont’d)

• Ultimate goal is to discover these non-trivial factors 
• Procedure 

• For any given N pick a random number and calculate powers of that number
• Calculate  xr until get xr ≡ 1 (mod N)

• If r is even then (x r/2) 2 ≡ 1(mod N) 
and

x r/2 x ≢ +1(mod N) or x ≢ -1(mod N)
• These r values will then give non-trivial square root values of 1(mod N)
• This will allow calculation of the factors of N
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Periodicity

• For example let N=21 and pick an example value x=2
• This give the following table

• 26=23x23 and note that (23)2=82=1mod(21)
• Discovered the value 8 as a non-trivial square root of (mod 21)
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20 1mod(21)

21 2mod(21)

22 4mod(21)

23 8mod(21)

24 16mod(21)

25 11mod(21)

26 1mod(21)
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r f(r) = xr(mod N)

20 1mod(21)

21 2mod(21)

22 4mod(21)

23 8mod(21)

24 16mod(21)

25 11mod(21)

26 1mod(21)

27 2mod(21)

28 4mod(21)

29 8mod(21)

210 16mod(21)

211 11mod(21)

212 1mod(21)

213 2mod(21)

214 4mod(21)

215 8mod(21)
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Mathematical Lemma for Factoring

• Lemma 

If N is an odd composite with at least two prime distinct factors and x is a 
uniformly random value between 0 and N-1, then the gcd (x, N) =1  has a 
probability of at least .5 that the order r of x (mod N) is even and x r/2 is a non-
trivial square root of 1(mod N)   

• Want to determine a periodic function from a repeating sequence of factoring
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Period Finding
Main Building Block of Factoring Algorithm 

Input; f:{0,1,…N-1}  S such that for all x, f(x) = f(x+r)

f(x) = f(y)= f(x+r) with r≠ 0

Number of repetitions is N/r = N/7 with no repetitions within period
Assume that f is 1:1 within the period 
Examine simple case first:  r divides N  (N >> r2)
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period

Start with a function from 0,1,…,N-1 to some n bit numbers to set S



Classical Option for Period Finding

• Selelct M as a 1000 digit number
• M ~ 101000

• r ~ 𝑀𝑀
• r is on the order of a 500 digit number
• 𝑟𝑟 inputs are sufficient to see a same value 
• 𝑟𝑟 is ~ 250 digit number  ~ 10250

• Not practical to calculate classically
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Quantum Computing Option for Period Finding
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period

|f(x)>

|x>

|0>

|x>superposition

1
𝑀𝑀
�

𝑥𝑥=0

𝑀𝑀−1
|𝑥𝑥 > |𝑓𝑓 𝑥𝑥 >

• Measure output
• See some random 

value f(r)
• Determine if there 

exists arithmetic 
progression as a 
repetition

1
𝑀𝑀
�

𝑥𝑥=0

𝑀𝑀−1
|𝑥𝑥 > |𝑓𝑓 𝑥𝑥 >

→ �
𝑥𝑥=0

𝑀𝑀−1
𝛼𝛼𝑥𝑥 |x >



Determine the value of 𝜶𝜶𝒙𝒙
• From the previous slide

• The 𝜶𝜶𝒙𝒙 coefficients are only non-zero at the periodic repetition points in the 
summation

• Introduce Fourier sampling
– Shift the 𝜶𝜶𝒙𝒙 so that the 1st non-zero value is matched to x=0
– This repetition interval is now matched to the period
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1
𝑀𝑀
�

𝑥𝑥=0

𝑀𝑀−1
|𝑥𝑥 > |𝑓𝑓 𝑥𝑥 > → �

𝑥𝑥=0

𝑀𝑀−1
𝛼𝛼𝑥𝑥 |x >



Procedure
• A quantum computer can discover this period in polynomial time
• Pick a random value M ( M > 2r2)  (M > 2N2) and construct a superposition 

1
√𝑀𝑀

�
𝑟𝑟

𝑀𝑀−1

• Next do Fourier sampling and classically reconstruct the period r
• Check that r is even and 

• If r is even then (x r/2) 2 ≡ 1(mod N) 
and

x r/2 x ≢ +1(mod N) or x ≢ -1(mod N)
• These r values will then give non-trivial square root values of 1(mod N)
• This will allow calculation of the factors of N
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Fourier Sampling

• In the graph above the repetition is r = 7 and number of trials is M = 35 
– Shift the 𝜶𝜶𝒙𝒙 so that the 1st non-zero value is matched to x=0

– This repetition interval is now matched to the period with amplitude 𝑟𝑟
𝑀𝑀

∑𝑥𝑥=0𝑀𝑀−1𝛼𝛼𝑥𝑥 |x >→ 𝑟𝑟
𝑀𝑀
∑𝑗𝑗=0𝑀𝑀−1 |𝑗𝑗𝑗𝑗 >
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Fourier Sampling

• In the graph above the repetition is r = 7 and number of trials is M = 350
– Shift the 𝜶𝜶𝒙𝒙 so that the 1st non-zero value is matched to x=0

– This repetition interval is now matched to the period with amplitude 𝑟𝑟
𝑀𝑀

∑𝑥𝑥=0𝑀𝑀−1𝛼𝛼𝑥𝑥 |x >→ 𝑟𝑟
𝑀𝑀
∑𝑗𝑗=0
𝑀𝑀
𝑟𝑟−1 |𝑗𝑗𝑗𝑗 >
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period

M              350  



Measurements from the Fourier Sampling to Get Period

• Output from the Fourier sampling will display random multiples of 𝑀𝑀𝑟𝑟
• Run the Fourier sampling to get outputs
• Given that the M = 350 and r = 7 the outputs will have random values such as 

100, 150, 200, etc.

• The outputs will be multiples of 𝑀𝑀
𝑟𝑟

• Calculate the greatest common divisor 
gcd (100, 150) is 50 

• Calculate r by dividing 𝑀𝑀
gcd(100,150)=7

• This is the procedure for period finding
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Simon’s Algorithm
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Review Previously Studied Quantum Algorithm Circuits  
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Deutsch’s Algorithm Circuit

Bernstein-Vazirani Algorithm Circuit

NOTE:
• Each of these algorithms is applied 

to get a deterministic solution by 
initializing a |1> in the B register

• This give a phase kick-back output 
and an answer in a single 
evaluation



Quantum Circuit for Simon’s Algorithm
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NOTE:
• Simon’s algorithm is initialized in 

the B register with  a |0>n

• There is no phase kick-back output 
for this circuit

• The output of this circuit gives 
superposition of 2 states



Recall From Professor Byrd’s Lecture

• Complete entangled output is 1
2

𝑛𝑛 ∑𝑥𝑥=02𝑛𝑛−1 |𝑥𝑥 > 𝑛𝑛|𝑓𝑓(𝑥𝑥 ) >𝑛𝑛

• Because the output is 2:1 (have both x and x ⨁𝑎𝑎 ) only need to sum the B 
register output over half the values 
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From Professor Byrd’s Lecture
Walsh Hadamard
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From Professor Byrd’s Lecture
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From Professor Byrd’s Lecture
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Simon’s Algorithm Procedure

• Set up a random superposition 1
2
𝑟𝑟 > + 1

2
𝑟𝑟⨁𝑠𝑠 > where r is a random n-bit string

• Fourier sample to get a random y: 𝑦𝑦 � 𝑠𝑠 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 2
• Repeat steps 1 and 2 n-1 times to generate linear equations in s
• Solve for s
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𝑦𝑦11𝑠𝑠1 ⋯ 𝑦𝑦𝑛𝑛1𝑠𝑠𝑛𝑛
𝑦𝑦12𝑠𝑠1 … 𝑦𝑦𝑛𝑛2𝑠𝑠𝑛𝑛

𝑦𝑦1
(𝑛𝑛−1)𝑠𝑠1 … 𝑦𝑦𝑛𝑛

(𝑛𝑛−1)𝑠𝑠𝑛𝑛

≡
≡
≡

0 (𝑚𝑚𝑚𝑚𝑚𝑚 2)
0 (𝑚𝑚𝑚𝑚𝑚𝑚 2)
0 (𝑚𝑚𝑚𝑚𝑚𝑚 2)



Shor’s Algorithm
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Shor’s Algorithm

• Statement of Shor’s Periodicity Problem
• Let f: ℤM ℤ be injective* periodic
• A function defined on ℤM is called periodic injective if there exists an integer 𝛼𝛼 ∈ ℤM

such that for all x ≠ y in ℤM there exists f(x) = f(y) implies y=x+ka for some integer 
k

• Relaxes mod 2 restriction and expands the values to include any decimal integer 
• Determine the period a

* Definition injective function - An injective function or one-to-one function is a function that 
preserves distinctness: it never maps distinct elements of its domain to the same element of its 
codomain. In other words, every element of the function's codomain is the image of at most one 
element of its domain.
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Generic Shor Algorithm Circuit 
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H ⨂𝑛𝑛 QFT M|0>

|0>

f(r) = xr(mod N) 

1
𝑀𝑀
�

𝑟𝑟=0

𝑀𝑀−1
|𝑟𝑟, 0 > 1

𝑀𝑀
�

𝑟𝑟=0

𝑀𝑀−1
|𝑟𝑟, 𝑥𝑥𝑥𝑥 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁) >

Quantum parallelism 
via H gate

QFT enables Fourier 
frequency basis 
measurement 



Gate Circuit for Shor’s Algorithm 

• Quantum parallelism is established in the A channel with an 𝐻𝐻⨂𝑛𝑛 Hadamard gate
• The B channel is initialized with a |0>r to effect a generalized Born Rule 

measurement
• Two analysis options at this point 

– Easy Case
– a|N period a divides evenly into N=2n (the original function’s domain size)
– Generalization of Simon’s 2:1 procedure
– Simon’s measurement gave a superposition of 2 states 
– Shor’s measurement will give a superposition of m states

19 November 2019                             
21 November 2019

Shor's Algorithm   Patrick Dreher 35



Born Rule
• Born rule for a 2 qubit system (easily generalized) 

Ψ > 2 = 𝛼𝛼 00 > +𝛽𝛽 01 > +𝛾𝛾 10 > +𝛿𝛿|11 ≥

𝛼𝛼
𝛽𝛽
𝛾𝛾
𝛿𝛿

• Factor the A-kets
• |Ψ > 2 = |0 >𝐴𝐴 𝛼𝛼|0 >𝐵𝐵 + 𝛽𝛽|1 >𝐵𝐵 + |1 >𝐴𝐴(𝛾𝛾|0 >𝐵𝐵 + 𝛿𝛿|1 >𝐵𝐵)
• Born Rule: If a bipartite state is factored relative to the A-register then a 

measurement of A will cause the collapse of the B register (vice-versa)

• A 0 implies that B 𝛼𝛼 0>+𝛽𝛽 1>
𝛼𝛼 2+|𝛽𝛽|2

and if A1 implies that B 𝛾𝛾 0>+𝛿𝛿 1>
𝛾𝛾 2+|𝛿𝛿|2
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Generalized Born Rule
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Shor’s Algorithm Easy Case

• Assumption of a|N and that f has property of injective periodicity
• Domain can be completely partitioned into many disjoint cosets of size “a”, 

each of which provides a 1-to-1 sub-domain for f
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a aa aa

0 2a ma(m-1)aa 3a

N



a|N period a divides evenly into N=2n

(the original function’s domain size)
• Need to also make sure that the periodicity cycles at least twice in the 

interval [0, M-1] (in practice want many cycles i.e. a << M)
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a aa aa

0 2a ma(m-1)aa 3a

N

a<<M



Comparison of Shor’s Algorithm with Simon’s Algorithm

• Initialization for both algorithms
– The circuit analysis is similar for both algorithms
– Simon used mod 2 integers and Shor tackles ordinary integer values
– In both algorithms the input to the oracle set for maximally mixed superposition in 

both algorithms
– Output is a superposition of 2 states 

• Post-oracle measurement
– in the standard basis should give all possible values of with equal probabilities
– Simon measure along the x-basis with a final Hadamard operator.
– Shor’s algorithm inserts a QFT for the post Oracle evaluation
– QFT sets up a measurement of the function’s frequency spectrum in Shor’s 

algorithm versus a preferred basis measurement in Simon’s (information about 
the frequency spectrum helps determine the period frequency)

– (Easy Case) Output is a superposition of m states 

19 November 2019                             
21 November 2019

Shor's Algorithm   Patrick Dreher 40



Shor’s Algorithm Procedure – Easy Case
• Select an integer T, that reflects an acceptable failure rate based on any 

known aspects of the period. (E.g., for a failure tolerance of .000001)
• Repeat the following loop at most T times.

1. Apply Shor’s circuit
2. Measure output of QFT and get cm  

a) [NOTE that output is zero everywhere except for values that are separated by multiples of the 
period “a” as a result of the Born Rule collapse of the output]

b) Measurements produce eigenvalues of m (m is the number of times the period divides evenly 
into the function’s domain  m=N/a is the number of times “a” divides N=2n)

c) If one can determine then it is possible to compute “a”
d) In the general case cm does not give discrete periodic spectrum but rather a distribution of 

values.  Must invoke probability theory to prove that the data can be reduced to a value of m
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Shor’s Algorithm Procedure – Easy Case
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(Easy Case) Computation Final Measurement Probabilities 
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Gate Circuit for Shor’s Algorithm

• Collaspsed B register will have 1
𝑚𝑚
∑𝑗𝑗=0𝑚𝑚−1 |𝑥𝑥0 + 𝑗𝑗𝑗𝑗 >𝑛𝑛 |𝑓𝑓 𝑥𝑥0 > 𝑟𝑟

• The superposition in the A register is determined by the measurement “f(x0) 
of the collapsed B register

|𝜓𝜓𝑥𝑥𝑥 >𝑛𝑛 ≡ 1
𝑚𝑚 �

𝑗𝑗=0

𝑚𝑚−1

|𝑥𝑥0 + 𝑗𝑗𝑗𝑗 >𝑛𝑛

Effect on the A register is seen in the next sequence of 5 steps
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Step 2:  Observe that Each cm 
Will be Measured with Equal Likelihood

• The easy case assumes N = am

• Know that ⁄𝑚𝑚 𝑁𝑁 = ⁄1 𝑎𝑎

1
𝑚𝑚
∑𝑗𝑗=0𝑚𝑚−1 |𝑥𝑥0 + 𝑗𝑗𝑗𝑗 >𝑛𝑛 1

𝑎𝑎
∑𝑐𝑐=0𝑎𝑎−1𝜔𝜔𝑥𝑥0𝑐𝑐𝑐𝑐|𝑐𝑐𝑐𝑐 >𝑛𝑛

• Therefore each cm is measured with probability  ⁄1 𝑎𝑎
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QFT (N)
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Step 4: Observe that a 𝑦𝑦𝑐𝑐 = 𝑐𝑐𝑐𝑐 Associated With “c” 
Coprime-to-”a” Will Be Measured With Probability ½*

• From step 1 shown that the likelihood of measuring one of the special 
ℂ = 𝑦𝑦𝑐𝑐 = 𝑐𝑐𝑐𝑐 𝑐𝑐=0

𝑎𝑎−1 was 100%
• Steps 2 and 3 demonstrated that 

– Each of the cm will be measured with equal likelihood
– The probability of selecting a number that is coprime to a at random from 

the numbers between 0 and a − 1 is (in this special “easy case”) 1/2, i.e., 
a constant, independent of “a”

*Note:  This step 4 seems overly elaborate.  However in the general case these 
probabilities cannot be imply calculated 
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Step 4: Observe that a 𝑦𝑦𝑐𝑐 = 𝑐𝑐𝑐𝑐 Associated With 
c Coprime-to-”a” Will Be Measured With Probability ½

• Following claims are shown (without proof) 
• Introduce notation

o ℂ = 𝑦𝑦𝑐𝑐 = 𝑐𝑐𝑐𝑐 𝑐𝑐=0
𝑎𝑎−1

o ℬ = 𝑦𝑦𝑏𝑏|𝑦𝑦𝑏𝑏 = 𝑏𝑏𝑚𝑚 ∈ ℂ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑎𝑎
• P ℂ ≡ P(measure some y ∈ ℂ)
• P ℬ ≡ P(measure some y ∈ ℬ)
• P ℬ|ℂ ≡ P(measure some y ∈ ℬ given that the measured y is known to be ∈ ℂ)
• P ℬ = P ℬ ℂ 𝑃𝑃(ℂ) = (1/2)x1 = ½
• Therefore this also implies P ¬𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑎𝑎) = 1 − 𝑃𝑃(𝑐𝑐 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑎𝑎

which is also 1/2
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Step 5: Measure y=cm Associated With c Coprime-to-a With 
Arbitrarily High Confidence In Constant Time Complexity
• Algorithm loops through the circuit
• Produces a number c, each pass, and c must be co-prime to a to be a success 

(and a c which is not coprime to a is classified as a failure)
• Constant Time Complexity (CTC) Theorem for looping algorithms - theorem 

states that the algorithm will “succeed,” yield a co-prime to a in constant time T

• Probability of at least one “mc” having c co-prime to a is 1 − 1
2

T

19 November 2019                             
21 November 2019

Shor's Algorithm   Patrick Dreher 52



Summary Argument Justifying Why 
Finding 𝒚𝒚𝒄𝒄 ∈ 𝑩𝑩 Solves Shor’s Problem

• Steps 1 through 5 led to the argument that a measurement of 𝑦𝑦𝑐𝑐 ∈ 𝐵𝐵 can be 
determined with near certainty after some predetermined number of 
measurements T

• After a measurement using Shor’s circuit the following information is known 
and unknown 
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Summary Argument Justifying Why 
Finding 𝒚𝒚𝒄𝒄 ∈ 𝑩𝑩 Solves Shor’s Problem (cont’d)

• Use GCD to produce m’=gcd (N, cm)
• If cm ∈ ℬ then c is co-prime to a and  m’=gcd (N, cm)=gcd (am, cm)=m
• Knowing m allows “a” to be calculated ( a=N/m). [Note:  this only happens if 

we measure y ∈ ℬ which is why finding such a y will give us the period and 
therefore solve Shor’s problem

• Do not know a priori if cm ∈ ℬ
• Try an m’ that will calculate a’=N/m and test whether a’=a by asking whether 

f(x+a)=f(x) for any x and x=1 
• “a” is the only number that will produce an equality here by the requirement 

of injective periodicity. If this is satisfied, problem is solved. 
• If not, we try T-1 more times because, with .999999 probability, we’ll succeed 

after T=20 times – no matter how big M (or N) is.
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Shor’s Algorithm – Second (General) Case

• No assumption of a|N but keep the property that f has injective periodicity
• take the integer quotient m=N/a there will be a remainder representing those 

“excess” integers that don’t fit into a final, full period interval
• Cannot apply the roots of unity argument to the B register as was done to get 

that pure periodic function in the easy case
• Domain can still be partitioned into many disjoint cosets of size a, each of 

which provides a 1-to-1 sub-domain for f, but now there is a final coset which 
may not be complete:
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Shor’s Algorithm – Second (General) Case

• General case produces an output frequency spectrum where none of the 
values are ever zero

• Helpful that most values are small compared to a finite set that are large BUT 
these large values are not themselves multiples of the “m”
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(General Case) 
Computation Final Measurement Probabilities 

1. Identify (without proof ) a special set of “a” elements ℂ = 𝑦𝑦𝑐𝑐 = 𝑐𝑐𝑐𝑐 𝑐𝑐=0
𝑎𝑎−1 of 

high measurement likelihood

2. Prove that the values in ℂ = 𝑦𝑦𝑐𝑐 = 𝑐𝑐𝑐𝑐 𝑐𝑐=0
𝑎𝑎−1 have high measurement likelihood

3. Associate 𝑦𝑦𝑐𝑐 𝑐𝑐=0
𝑎𝑎−1 with  𝑐𝑐/𝑎𝑎 𝑐𝑐=0

𝑎𝑎−1

4. Describe an O(log3 N) algorithm that will produce c/a from yc [Use the 
mathematics of differential calculus and continued fractions to produce a 
sequence of (reduced) fractions, {nk/dk } that approach (get closer and closer 
to) x. Want these other fractional approximations because among them we’ll 
find one, n/d , which is identical to our sought-after c/a

5. Observe that yc associated with c coprime to a will be measured in constant 
time
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Questions
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